Mass-less spinning UV-vis photon swaps hand of polymers

Figure_E-HP.pdfAbsolute asymmetric synthesis (AAS), meaning synthesis of desired chiral molecule (one of two mirror image molecules) using circularly polarized light (CPL) source without any chemical influence, was first inferred by French scientist, Le Bel in 1874 and Dutch scientist, van’t Hoff in 1894, independently. This conjecture prompted German chemists, W. Kuhn and E. Brown to challenge the first successful experimental demonstration of AAS, though ultra tiny yield in 1929. These pioneering theoretical and experimental works led to many researchers over 150 years who are interested in AAS because of no need of any specific, expensive chemicals. We found that, using chain-like green-emitting pi-conjugated polymer (PF8T2), (i) handedness of the resulting PF8T2 aggregates is determined by CPL source irradiation wavelength (UV or visible region) and its handedness. When right-CPL source in UV region is used, the resulting PF8T2 was right-handed helix, but right-CPL source in visible region is employed, the resulting PF8T2 was oppositely left-handed helix and vice versa, moreover, (ii) by precisely controlling refractive index of inexpensive common organic solvent (≈1.4, JPY 100 only per liter), the yield of PF8T2 helix increased upto 10%, that is the highest value among the heretofore reported AAS experiments.

Aggregation Induced Mirror Symmetry Breaking

DSCN0595.JPGSince the time of Pasteur, the origin of biomolecular handedness on earth has remained a mystery to scientists. Nature′s elegant bottom–up preference has led to the development of synthetic polymers, supramolecules, liquid crystals, small molecules, and organic solid crystals, which have chiroptical signals that enable us to study them through their ambidextrous circular dichroism (CD) and circularly polarised luminescence (CPL) properties. Such materials can be produced under mild and ambient conditions. The terpene chirality transfer demonstrated in our group may provide a new environmentally friendly, safer, and milder process to rapidly produce ambidextrous chiroptical polymeric materials at ambient temperature from CD-/CPL-silent polymers without any specific chiral catalysts or substituents.

Aggregation-Induced Enhancement (AIEnh) in CD, ORD, and CPL Signals by Our Research Teams

AIEnh-CD (with AIEmh-ORD)

1. H. Nakashima, M. Fujiki, J. R. Koe, J. Am. Chem. Soc., 123, 6253 (2001).
2. H. Nakashima, M. Fujiki, J. R Koe, M. Motonaga, J. Am. Chem. Soc., 123, 1963 (2001).
3. H. Nakashima, J. R. Koe, K. Torimitsu, M. Fujiki, J. Am. Chem. Soc., 123, 4847 (2001).
4. Z.-B. Zhang, M. Fujiki, M. Motonaga, H. Nakashima, K. Torimitsu, H.-Z. Tang, Macromolecules, 35, 941 (2002).
5. H.-Z. Tang, M. Fujiki, T. Sato, Macromolecules, 35, 6439 (2002).
6. Z.-B. Zhang, M., Motonaga, M. Fujiki, C. E. McKenna, Macromolecules, 36, 6956 (2003).
7. Z.-B. Zhang, M. Fujiki, M. Motonaga, C. E. McKenna, J. Am. Chem. Soc., 125, 7878 (2003).
8. A. Ohira, M. Kunitake, M. Fujiki, M. Naito, A. Saxena, Chem. Mater., 16, 3919 (2004). (as a film state).
9. A. Ohira, K. Okoshi, M. Fujiki, M. Kunitake, M. Naito, T. Hagihara, Adv. Mater., 16, 1645 (2004). (as a film state).
10. S. Y. Kim, M. Fujiki, A. Ohira, G. Kwak, Y. Kawakami, Macromolecules, 37, 4321 (2004). (as a film state).
11. A. Saxena, G. Guo, M. Fujiki, Y. Yang, A. Ohira, K. Okoshi, M. Naito, Macromolecules, 37, 3081 (2004). (as a film state).
12. K. Terao, Y. Mori, T. Dobashi, T. Sato, A. Teramoto, M. Fujiki, Langmuir, 20, 306 (2004). (as a capsule state).
13. R. Rai, A. Saxena, A. Ohira, M. Fujiki, Langmuir, 21, 3957 (2005).
14. S. Haraguchi, T. Hasegawa, M. Numata, M. Fujiki, K. Uezu, K. Sakurai, S. Shinkai, Org. Lett., 7, 5605 (2005).
15. M. Ikeda, T. Hasegawa, M. Numata, K. Sugikawa, K. Sakurai, M. Fujiki, S. Shinkai, J. Am. Chem. Soc., 129, 3979 (2007).
16. W. Zhang, S. Ishimaru, H. Onouchi, Roopali Rai, A. Saxena, A. Ohira, M. Ishikawa, M. Naito, M. Fujiki, New J. Chem., 34, 2310 (2010).
17. M. Fujiki, Symmetry, 2, 1625 (2010).
18. W. Zhang, M. Fujiki, Z. Zhu, Chem. Eur. J. 17, 10628 (2011).
19. W. Zhang, K. Yoshida, M. Fujiki, X. Zhu, Macromolecules, 44, 5105 (2011).
20. T. G. Barclay, K. Constantopoulos, W. Zhang, M. Fujiki, J. G. Matisons, Langmuir, 28, 14172 (2012).
21. T. G. Barclay, K. Constantopoulos, W. Zhang, M. Fujiki, N. Petrovsky, J. G. Matisons, Langmuir, 29, 10001 (2013).
22. M. Fujiki, K. Yoshida, N. Suzuki, J. Zhang, W. Zhang, X. Zhu, RSC Adv., 3, 5213 (2013).
23. N. Suzuki, M. Fujiki, R. Kimpinde-Kalunga, J. R. Koe, J. Am. Chem. Soc., 135, 13073 (2013).
24. M. Fujiki, K. Yoshida, N. Suzuki, J. Zhang, W. Zhang, X. Zhu, RSC Adv., 3, 5213 (2013).
25. N. Suzuki, M. Fujiki, R. Kimpinde-Kalunga, J. R. Koe, J. Am. Chem. Soc., 135, 13073 (2013).
26. S. Yorsaeng, Y. Kato, K. Tsutsumi, A. Inagaki, B. Kitiyanan, M. Fujiki, K. Nomura, Chem. Eur. J., 21, 16764 (2015).
27. L. Wang, Y. Lu, W. Zhang, X. Zhu, M. Fujiki, J. Am. Chem. Soc. 2017 (DOI: 10.1021/jacs.7b07626).

AIEnh-CPL (with AIEnh-CD and AIEnh-ORD)

1. H.-Z. Tang, M, Fujiki, M., Motonaga, Polymer, 43, 6213 (2002). (as a film state).
2. S. Haraguchi, M. Numata, C. Li, Y. Nakano, M. Fujiki, S. Shinkai, Chem. Lett., 38, 254 (2009).
3. Y. Kawagoe, M. Fujiki, Y. Nakano, New J. Chem., 34, 637 (2010).
4. Y. Nakano, Y. Liu, M. Fujiki, Polym. Chem., 1, 460 (2010).
5. Y. Nakano, M. Fujiki, Macromolecules, 48, 7511 (2011).
6. K. Watanabe. T. Sakamoto, M. Taguchi, M. Fujiki, T. Tamaki, Chem. Commun., 47, 10996 (2011). (as a film state).
7. K. Okano, M. Taguchi, M. Fujiki, T. Yamashita, Angew. Chem. Int. Ed., 50, 12474 (2011). (as a film state)
8. Y. Nakano, F. Ichiyanagi, M. Naito, Y. G. Yang, M. Fujiki, Chem. Commun., 48, 6636 (2012). (as a gel state).
9. M. Fujiki, A.J. Jalilah, N. Suzuki, M. Taguchi, W. Zhang, M. M. Abdellatif, K. Nomura, RSC Adv., 2, 6663 (2012).
10. M. Fujiki, Y. Kawagoe, Y. Nakano, A. Nakao, Molecules, 18, 7035 (2013).
11. T. Shiraki, Y. Tsuchiya, T. Noguchi1, S.-i. Tamaru, N. Suzuki, M. Taguchi, M. Fujiki, S. Shinkai, Chem. Asian J., 9, 218 (2014).
12. L. Wang, N. Suzuki, J. Liu, T. Matsuda, N.A.A. Rahim, W. Zhang, M. Fujiki, Z. Zhang, N. Zhou, X. Zhu, Polym. Chem., 5, 5920 (2014).
13. J. Liu, J. Zhang, S. Zhang, N. Suzuki, M. Fujiki, L. Wang, L. Li, W. Zhang, N. Zhou, X. Zhu, Polym. Chem., 5, 784 (2014).
14. K. Watanabe, Y. Koyama, N. Suzuki, M. Fujiki, T. Nakano, Polym. Chem., 5, 712 (2014). (as a film state)
15. M. Fujiki, Y. Donguri, Y. Zhao, A. Nakao, N. Suzuki, K. Yoshida, W. Zhang, Polym. Chem., 6, 1627 (2015).
16. M. Fujiki, K. Yoshida, N. Suzuki, N. A. A. Rahim, J. A. Jalil, J. Photochem. Photobiol. A: Chem., 331, 120 (2016).
17. Y. Zhao, N. A. A. Rahim, Y. Xia, M. Fujiki, B. Song, Z. Zhang, W. Zhang, X. Zhu, Macromolecules, 49, 3214 (2016). (as gel and film states).
18. N. A. A. Rahim, M. Fujiki, Polym. Chem., 7, 4618 (2016).
19. M. Fujiki, S. Yoshimoto, Mater. Chem. Front., 1, 1773−1785 (2017).
20. S. Thi Duong, M. Fujiki, Polym. Chem., 8, 4673−4679 (2017).

Leaf Curl.jpg
Nakano, Y., Liu, Y., Fujiki, M., Ambidextrous Circular Dichroism and Circularly Polarised Luminescence from Poly(9,9-di-n-decylfluorene) by Terpene Chirality Transfer, Polymer Chemistry, 1, 460-469 (2010).

Kawagoe, Y., Fujiki, M., Nakano, Y., Limonene Magic: Noncovalent Molecular Chirality Transfer Leading to Ambidextrous Circularly Polarized Luminescent π-Conjugated Polymers, New Journal of Chemistry, 34, 637-647 (2010).

Fujiki, M., Mirror Symmetry Breaking in Helical Polysilanes: Preference between Left and Right of Chemical and Physical Origin, Symmetry, 2, 1625-1652 (2010).LinkIconFree DownLoad

Nakano, Y., Ichiyanagi, F., Naito, M., Yang, Y., Fujiki, M., Chiroptical Generation and Inversion During The Mirror-Symmetry-Breaking Aggregation of Dialkylpolysilanes due to Limonene Chirality, Chem. Commun., 48, 6636-6638 (2012).

Fujiki, M., Kawagoe, Y., Nakano, Y., Nakao, A. Mirror-Symmetry-Breaking in Poly[(9,9-di-n-octylfluorenyl-2,7-diyl)-alt-biphenyl] (PF8P2) is Susceptible to Terpene Chirality, Achiral Solvents, and Mechanical Stirring, Molecules, 18, 7035-7057 (2013).LinkIconFree DownLoad

Michiya Fujiki, Supramolecular Chirality: Solvent Chirality Transfer in Molecular Chemistry and Polymer Chemistry, Symmetry, 6, 677-703 (2014).LinkIconFree DownLoad

Copyright (c) 2007-2019. All rights reserved. Michiya Fujiki. Nara Institute of Science and Technology