Ferromagnetic-Metal Nanocomposite Films: A Possible Candidate for Left-Handed Materials

Satoshi Tomita

Japan Science and Technology Agency, and RIKEN, Japan
Outline

1. Nanocomposite films and LHMs
2. Ni-polyimide nanocomposite films
3. Ferromagnetic resonance study
4. Summary & Future works
Left-handed materials

Left-Handed Materials (LHMs):
Material with both permittivity (ε) and permeability (μ) negative
Extraordinary electromagnetic response (Veselago, 1964)
e.g., inverse Doppler shift, negative index of refraction

Negative μ?
1. Metamaterials:
 Array of split-ring resonators

2. Ferromagnetic-metal (FM-M) nanocomposite films
 Using ferromagnetic resonance (FMR)

Ferromagnetic-metal nanoparticle
Insulating matrices
Positive circularly polarised microwave (ω) :

$\omega = \omega_0$: ferromagnetic resonance (FMR)

Magnetic moment under applied field H_0 :
Precession with Larmor frequency (ω_0)

$\frac{\mu^+}{\omega} = \frac{1}{\omega_0}$

The idea....
FM-M nanocomposite for LHMs

FM-M nanocomposite films

\[\epsilon < 0 \]
\[\mu^+ < 0 \]
@ vicinity of FMR frequency (\(\omega_0 \))

low eddy current loss

A possible candidate for LHMs at vicinity of a FMR frequency (microwave region)

\[\omega_p = \sqrt{\frac{ne^2}{\epsilon_0 m}} \]
this project

Mission:
Realization of LHMs using FM-M nanocomposite

Present study:
1. Preparation of FM-M nanocomposite for LHMs
 A. Fe-SiO$_2$ nanocomposite films
 By co-sputtering method
 B. Ni-Polyimide nanocomposite films
 By chemically implantation

2. FMR studies of nanocomposite films