有機トランジスタを用いた THz 波センサのための基礎技術

奈良先端科学技術大学院大学 中村雅一

1. はじめに

テラヘルツ(THz)波とは、一般に周波数 0.1~10 THz(波長: 30~3000 µm、フォ トンエネルギー:約 0.4~40 meV)となる電波と光の境界領域の電磁波のことを指 す。日本の電波法の定義では周波数 3 THz 以下が電波であり、ここでの呼び名はミ リ波からサブミリ波になる。一方、分光学的には波長 1000 µm 前後より短いものが 遠赤外線に含まれる。ただし、1 THz という周波数は、電子回路による発信器にと って挑戦的な超高周波であり、レーザーなどの高強度単一波長光源を得るには極め てフォトンエネルギーの小さい、発生の困難な光であるという側面がある。このた め、「暗黒領域」や「谷間」と呼ばれることもある未開拓の領域でもある。

THz 帯では、電波と同様に自由電子によって吸収や反射が生じる他、極性を持つ 気体分子の回転遷移が主な吸収源となる。特に水分子の回転遷移は強い吸収を持ち、 大気による吸収ピークの大部分が水分子によるものである。反対に、水も自由電子 も含まない物質に対する透過性が高い点が特徴の一つである。また、生化学分子の 多くにも、水和水や弱い結合による振動遷移などに起因する特徴的な吸収があるこ とが知られている¹⁾。このような性質から、セキュリティ分野や医療・医薬分野に おいて THz 波による分光やイメージングの様々な応用が期待され、その発生や検出 に関する研究が盛んに行われている^{2,3)}。しかしながら、THz 波が分光やイメージン グ用途で使われるようになってまだ 20 年程度しか経過しておらず、未だに十分な強 度の単色光源や、イメージセンサが普及しているとは言いがたい状況である。

筆者らは有機電界効果トランジスタ(OFET)研究の過程で発見したペンタセン HOMO バンド端における微小なポテンシャルゆらぎ^{4,5)}を利用した、低コストかつ マトリックス化が容易な OFET 型 THz 波センサを考案し、そのための基礎的な研究 を進めてきた。本講演では、研究の発端となった HOMO バンド端ゆらぎの概要、 そこに電界誘起された「半自由」なホールによる THz 波吸収スペクトルの特徴、 OFET 構造中での THz 波伝播特性の電磁界シミュレーション、および、THz 波セン シングの初期的な結果について紹介する。

2. ペンタセン薄膜における HOMO バンド端ゆらぎ

2000 年代、筆者らは、有機低分子多結晶膜を活性層とする OFET におけるキャリ ア輸送の制限要因について掘り下げる研究を進めていた。その過程で、ペンタセン 薄膜を活性層とする OFET の定常電流下チャネル内電位分布を AFM ポテンショメ トリ⁶⁷⁾によって精密計測を行ったところ、結晶粒内の単結晶的と思われていた結晶 ドメイン中にも電位勾配の微少なゆらぎが常に存在していることを見いだした。検 討の結果、これは HOMO バンド端ポテンシャルが空間的にゆらいでいるためであ るという結論に達した⁴⁾。図1(a)に、電位勾配から求めた HOMO バンド端ポテンシ ャルプロファイルの一例を、図1(b)にポテンシャルのヒストグラムを示す。ゆらぎの振幅はポテンシャルの標準偏差として約14 meV、最小周期は30~50 nm であり、 基板であるゲート絶縁層表面の組成によらず、その周期や振幅は一定であることが 確かめられている。このゆらぎの最小周期はペンタセン薄膜中の面内方向結晶子サ イズと一致しており、基板表面の凹凸によって成長時に導入される積層欠陥がゆら ぎの起源であると考えている⁸⁾。図1(c)に、様々な解析を元に求めたポテンシャル ゆらぎを有する HOMO バンド端付近の状態密度関数の標準的なモデルと、OFET が オン状態での 300 K におけるキャリア密度を示す。この図において、いわゆるモビ リティエッジは-20~-10 meV に位置すると考えられることから、ゲート電界によっ て誘起されたホールの過半数はゆらぎの中に捕らわれ、電流には寄与していないこ とが判る。従って、ペンタセン OFET において、バンド端ゆらぎは、みかけの電界 効果移動度を制限している主要な要因の一つである。

図1 HMDS 処理を行った SiO₂上に成長したペンタセン薄膜における、(a)結晶ドメイン中 HOMO バンド端ゆらぎプロファイル、(b)ポテンシャルのヒストグラム、および、(c)様々な 解析から求めたバンド端近傍の状態密度関数モデル(実線)と室温でのキャリア密度

ところで、図1(a)および(c)から、最も密度が高いゆらぎの中央付近のエネルギー を持つキャリアにとって、その輸送障壁の大きさは5~10 meV 前後に多く分布して いることがわかる。実際に、キャリア移動度の温度依存性を解析すると、結晶ドメ イン内の熱活性型キャリア移動度に相当する項において、10 meV 程度の活性化エネ ルギーが現れる。これが1~2 THz 程度の THz 波のフォトンエネルギーに相当する ことから、THz 波を照射し、それが直接的にキャリアにエネルギーを与えてゆらぎ 障壁を超えるエネルギーを持つキャリアが増加することで、OFET 出力電流が変化 すると期待される。10 meV 程度のポテンシャル障壁を再現性良く半導体デバイス中

-220(28)-

に人工的に作り込むことは容易ではないのに対して、ペンタセン OFET では作製条 件によらず再現性よく障壁が得られるのである。これが、OFET 構造を利用した THz 波センサの研究を始めたきっかけである。

3. ペンタセン薄膜に電界誘起されたホールによる THz 波吸収スペクトル

この研究を始めた段階では、そもそも有機半導体中のキャリアによる THz 波吸収 についての報告例が極めて限られていた⁹。そこで、まずは OFET 中に蓄積されたキ ャリアによる THz 波吸収スペクトルを得るところから研究をスタートした。

図2に、筆者らが用いている THz 波時間領域分光法(THz-TDS)のための光学系 概略を示す。フェムト秒レーザーから照射されたパルス幅 100 fs 以下の近赤外光パ ルスが、ポンプ光として THz 波発生器(TA 1)に導かれる。我々のシステムでは、THz 波発生器として光伝導アンテナを用いている。ここで発生する THz 波パルスは幅広 い周波数範囲の THz 波が重なったものである。これが、放物面ミラー(PM1)および 樹脂レンズ(L3)で集光されて試料(Sample)を透過した後、再び樹脂レンズ(L4)および 放物面ミラー(PM2)を経て発生器と同構造の検出器(TA2)に導かれる。

一方、ビームスプリッタ(BS)で分けられた近赤外光パルスは、ディレイラインを 通った後にプローブ光として TA2 に導かれている。TA2 では光パルスが入射した瞬 間の THz 電界(強度および極性)に応じたパルス電流が間欠的に流れ、電流アンプ およびロックインアンプを経てこれを平滑化したものを信号として記録する。この とき、ディレイラインを走査することでプローブ光のタイミングをずらしながら測 定し、THz 波パルスの電界時間波形が計測される。従って、THz 波の強度だけでな く位相情報も得られることが THz-TDS の特徴である。この位相情報は、後に述べ る電磁界解析のために材料の複素誘電関数を求める際に有用である。

図2 THz-TDS 光学系の概略図

図3(a)の挿入図に、本研究で用いたペンタセン OFET 試料の断面構造を示す。測定した素子は、ボトムコンタクト型の OFET 構造であり、基板全域にわたって存在するキャリアによる THz 波吸収を軽減するため、比較的大きな抵抗率(3.78-4.20Ω cm)の n型 Si 基板を使用している。Si 基板上にゲート絶縁膜として熱酸化膜を形成

した後、フォトリソグラフィ法と真空蒸着法により櫛型のソース/ドレイン電極構造 を形成してある。その上に、ペンタセンを 50nm 真空蒸着することにより OFET を 作製した。一方、得られた吸収スペクトルに対するシリコン基板中の自由キャリア 吸収の影響を調べるために、ペンタセン膜の代わりに薄い Au (膜厚:11 nm)を蒸着 した対照試料も作製した。

図3 ペンタセン OFET における (a) THz 波変調吸収スペクトル、および、 (b) 吸収量のゲート電圧依存性と OFET 出力特性との比較

これら試料を THz-TDS 装置にセットし、伝達特性から選択したオン電圧とオフ 電圧を交互にゲートに印加して、それぞれの透過 THz 波時間波形を測定し、一定回 数蓄積した。その後、両時間波形をフーリエ変換して THz 波透過スペクトルを求め、 オン電圧印加時の透過スペクトルをオフ電圧印加時のもので割ることで変調吸収ス ペクトルを求めた。

得られた結果の一例を図3(a)に示す¹⁰⁾。OFET 試料の変調吸収スペクトルが太い 曲線で、対照試料のスペクトルが細い曲線で現されている。対照試料では、Auのフ ェルミレベル付近の状態密度関数がほとんどフラットであることから、変調吸収と して得られるスペクトル(図の横縞領域)はゲート電極として用いた基板シリコン 中の自由電子によるものである。これは、よく知られている Drude モデルによる吸 収スペクトル(図の点線)とよく一致している。一方、OFET 試料の変調吸収スペ クトルから対照試料のものを差し引いた残り(図の縦縞領域)はペンタセン中に誘 起された自由ホールによる吸収である。こちらは周波数が上がるにつれて吸収が増 加する傾向が見られる。このカーブはシンプルな Drude-Lorentz モデルでは再現で きず、ペンタセン中のキャリアがおかれた「半自由」な状態を表しているものと考 えられる。なお、この吸収の積分値は、図3(b)に示されるように、OFET の出力電 流に寄与する自由ホール密度と完全な比例関係にあることが確かめられている¹⁰。

4. 有機電界効果トランジスタ中での THz 波伝播特性

OFET 構造を THz 波センサとして用いる場合、検出部であるチャネルは導体であるソース/ドレイン電極に隣接している。また、電極やチャネルなど素子各部のサ

イズも、THz 波の波長である 30μ m~3 mm に近い場合が多い。そのため、干渉効 果によってペンタセン層に印加される THz 電界強度に周波数依存性が生じる可能 性が高い。THz 波センサとしての感度最適化のためにも、正確な変調吸収スペクト ルによって物性的な解析を行うためにも、ペンタセン層中での THz 電界の相対強度 を知る必要がある。そこで、予め OFET 構成材料の複素誘電関数を THz-TDS によ って求めた上で、Finite-Difference Time-Domain (FDTD)法¹¹⁾によって、OFET 構造中 での THz 波伝搬特性のシミュレーションを行った。

図4(a)に、FDTD 法によって求めた各周波数におけるペンタセン層中での相対電 界強度スペクトルを示す。ここでは、THz 電場がソース/ドレイン電極と垂直にな る偏波をx偏波、平行になる偏波をy偏波とし、チャネル長 140µmの櫛形電極を モデル化してシミュレーションを行った。この結果から、0.6 THz 以上の周波数で は、偏波方向や周波数によらず比較的電界強度が一定であるのに対して、0.5 THz 以下では、電界強度が偏波方向によって大きく異なることがわかる。これは、ソー ス/ドレイン電極が偏光子として働き、y偏波の THz パルス波を入射させると、図 4(b)に示されるように低周波数成分が大きく反射されるためである。ただし、この 偏光子効果は低周波数領域に限られており、チャネル長を 100µm 程度以上に保て ば、OFET 型 THz センサが感度を有する高周波数側では、感度特性に影響はないと 考えられる。

図4 (a) 各周波数におけるペンタセン層中での THz 波電界強度スペクトル、および、(b) y 偏波の THz パルス波の一部が試料表面の電極で反射される様子を示す断面電界強度分布(点 線長方形で囲まれた領域が OFET 断面であり、その上辺に沿って4箇所見られる暗い部分が ソース/ドレイン電極である。)

5. THz 波照射による OFET 出力電流の変化

ペンタセンOFETによるTHz波検出に関する実験はまだ開始したばかりであるため、まとまった結果はないが、現時点での暫定的な結果の一部を紹介する。

図5に、THz 波照射のオン/オフによる OFET 出力電流の変化の例を示す。この 実験では、図2の光学系において、THz 波検出器の出力電流の代わりに OFET の出 力電流をロックイン検出しており、ロックイン出力を記録しながら励起レーザー光 を上流でオン/オフした。この実験では素子の冷却を行っていないが、マイクロワ ット程度の弱い THz 波が、かすかながらも検出されていると思われる。

図5 THz 波照射のオン/オフによる OFET 出力電流の変化

12. まとめ

OFET型 THz センサの研究はまだ始まったばかりであり、現時点でセンサとして の性能を議論するだけの十分なデータは得られていない。しかし、OFET型 THz 波 センサが実現すれば、ゆらぎポテンシャルが作製条件に依存しない点、ならびに、 OFET が本質的に低温プロセスで作製可能であるという点を活かして、低い作製プ ロセスコストとフィルム基板上でのセンサマトリックス形成が可能という大きな利 点がある。これは、ロール上に丸めて持ち運ぶことができる大面積 THz 波イメージ ングデバイスが実現容易であることを意味している。大面積に平行照射できる THz 波光源が必要であるが、例えば、コンサート会場の入り口でのセキュリティチェッ ク用途に、THz 影絵を用いることが出来るようになると期待される。

参考文献

1) http://thzdb.org/

2) 阪井清美, 谷雅彦: 応用物理, 70 (2001) 149.

3) K. Sakai (Ed.), Topics of Applied Physics vol. 97: Terahertz Optoelectronics (Springer-Verlag Berlin Heidelberg, 2005).

4) N. Ohashi, H. Tomii, R. Matsubara, M. Sakai, K. Kudo, M. Nakamura: Appl. Phys. Lett., 91 (2007) 162105.

5) R. Matsubara, N. Ohashi, M. Sakai, K. Kudo, M. Nakamura: Appl. Phys. Lett., 92 (2008) 242108.

6) M. Nakamura, M. Fukuyo, E. Wakata, M. Iizuka, K. Kudo, K. Tanaka: Synthetic Metals, 137 (2003) 887.

7) M. Nakamura, N. Goto, N. Ohashi, M. Sakai, K. Kudo: Appl. Phys. Lett., 86 (2005) 122112.

8) R. Matsubara, M. Sakai, K. Kudo, N. Yoshimoto, I. Hirosawa, M. Nakamura: Org. Electron., 12 (2011) 195.

9) 例えば、THz 波吸収から OFET 中のキャリア密度を定量したという報告 {J. Lloyd-Hughes, T. Richards, H. Sirringhaus, E. Castro-Camus, L.M. Herz, M.B. Johnston: Appl. Phys. Lett., **89** (2006) 112101}はあったが、必ずしも有機半導体層中のキャリアによる吸収そのものが測定 されていたわけではない。

10) S.-G. Li, R. Matsubara, T. Matsusue, M. Sakai, K. Kudo, M. Nakamura: Org. Electron., 14 (2013) 1157.

11) 宇野 亨: FDTD 法による電磁界およびアンテナ解析 (コロナ社, 1998).