放射光を用いた高角度分解能インプレーンX線回折による 有機多結晶薄膜の結晶構造評価

○松原 亮介、中村 雅一 奈良先端科学技術大学院大学 物質創成科学研究科 matsubara@ms.naist.jp

1. はじめに

有機薄膜トランジスタ(Organic Thin-Film Transistor; OTFT)において、電界効果移動 度はデバイスの動作速度を決定する重要な指標である。電界効果移動度の制限要因を解 明することは学術的な観点のみならず、デバイス応用においても重要な課題である。

我々のグループではこれまでに、AFM ポテンショメトリと呼ばれる、OTFT 動作時の チャネル内の高さ像と表面電位像を同時に取得することが可能な測定法によって、活性 層にペンタセンを用いた OTFT の移動度制限要因を詳細に評価してきた^{1,2)}。その結果、 AFM で形態的に判別されるグレインが、4 つの結晶ドメインで構成されており、グレイ ン境界のみならず結晶ドメイン境界においても、100~150 meV 程度のキャリア輸送障壁 が存在することを明らかにしてきた。また、キャリア輸送障壁を考慮したモデルから結 晶ドメイン内の移動度を見積もっても単結晶の値よりも一桁程度低い値となることから、 結晶ドメイン内においても移動度制限要因が存在することを報告してきた。さらに、結 晶ドメイン内における制限要因の起源の一つとして、我々は、結晶ドメイン内における 数十 meV 程度の HOMO バンド端プロファイルのゆらぎを発見している。

一般に単結晶と考えられているグレインあるいは結晶ドメイン内において HOMO バ ンド端ゆらぎが生じる原因としては、(1)結晶ドメイン自体は単結晶であるが、格子が 不均一にひずんでいる場合、もしくは(2)結晶ドメインが実はさらに小さな結晶子から なるモザイク結晶であり、その境界において微小な分子パッキングの乱れが生じている 場合、が考えられる。これを明らかにするため、我々は微小角入射インプレーンX線回 折を用いて結晶ドメイン内の微結晶の構造評価を行ってきた。本稿では、我々がこれま でに行ってきた、放射光X線を用いた高角度分解能のインプレーンX線回折によるペン タセン結晶ドメイン内の不均一ひずみおよび結晶子サイズの評価結果について紹介する。

2. 微小角入射インプレーンX線回折による結晶子サイズおよび不均一ひずみの解析

微小角入射 X 線回折(Grazing Incidence X-ray Diffraction; GIXD)は、X線を基板の全 反射臨界角程度で入射することで、X 線の基板への侵入を抑え、基板によるバックグラ ウンドを低減し、薄膜からの回折ピークを感度良く検出する方法である。検出器を基板 面内方向($2\theta_{xy}$)にスキャンすることで、OTFT チャネル内のキャリア輸送にとって重要 な面内方向の結晶構造を評価することができる。

HOMO バンド端ゆらぎの起源と考えられる結晶子や不均一ひずみは、回折ピークの半 値幅から評価する。詳細については省略するが、単一の回折ピークから両者の影響を分 けて解析する方法として、Williamson-Hallの方法が用いられる³⁾。W-H法では結晶子サイズおよび不均一ひずみは以下の関係式で表される。

$$\beta \frac{\cos \theta}{\lambda} = \varepsilon_{\rm rms} \frac{2\sin \theta}{\lambda} + \frac{K_{\rm s}}{\langle D \rangle} \quad (1)$$

ここで、 β は回折ピークの広がり、 λ は X 線波長、 ϵ_{ms} は不均一ひずみの二乗平均、<D> は平均結晶子サイズ、 K_s は Scherrer 定数と呼ばれる補正係数を表す。なお、Scherrer 定 数は、本来は結晶の形状を考慮して決めるべきであるが、本研究では有機薄膜に対して 経験的に確からしいことが分かっている値の平均値($K_s = 0.95$)を用いている。(1)式 より、 $\beta \cos\theta \lambda 2 \sin\theta \lambda$ の関係をプロットしたとき、不均一ひずみの影響がある場合、プ ロットは右上がりの直線となり、その傾きから不均一ひずみを、切片から結晶子サイズ をそれぞれ見積もることができる。

ただし、実際の測定においては装置系による X 線のぼやけ(装置関数、通常ガウス関数となる)も考慮する必要がある。特に、有機低分子結晶の場合、結晶子サイズは数十 ナノメートル程度と大きく、回折ピーク半値幅も極めてシャープになることが予想され る。したがって装置関数の半値幅も可能な限り小さくする必要がある。実験室系におい てはソーラースリットを用いて装置関数の広がりを小さくすることが多いが、半値幅と しては 0.1 度程度(X 線源が CuKa の場合、最大 40nm 程度の結晶子サイズまで解析可能) が限界であり、有機薄膜の結晶子サイズを評価するにはやや不十分である。さらに、高

角度分解能化することでX線の検出強度も 低下するが、主に炭素などの軽元素からな る有機材料の場合、無機材料に比べて回折 強度も弱いため、解析に十分なピーク強度 を得られなくなってしまうという問題点も ある。この問題を克服するため、本研究で はSPring-8の放射光X線を用いて測定を行 った。また、ソーラースリットの代わりに アナライザ結晶を用いることで、ソーラー スリットよりも高い角度分解能で半値幅の 解析を行えるようになった。図1にアナラ イザ結晶を用いた場合の装置関数を示す。 アナライザ結晶としてフッ化リチウム単結 晶を用いた場合は0.04度、ゲルマニウム単 結晶を用いた場合は 0.004 度までの回折ピ ーク半値幅を解析することが可能である。

図 1. アナライザ結晶を用いた際の装置関数 (Si (001)ウェハの(220)回折ピークから決定した).マーカーは実験値,実線は Gauss 関数によるフィッティング結果を表す.

3. 実験方法

試料として、熱酸化膜付きシリコンウェハ上に成長したペンタセン薄膜を用いた。基板を有機溶媒による超音波洗浄および UV/O₃ 処理によって清浄化した後に、分子線蒸着法⁴⁾によって 30 nm のペンタセン薄膜を成長させた。成長時の真空度は約 5×10⁸ Pa、成

-118(62)-

長速度は 0.3 nm/min に固定し、成長温度を 5~100℃の間で変化させた。

GIXD 測定は SPring-8 の BL46XU に設置された HUBER 社製の多軸回折を用いて行った。X 線波長および入射角はそれぞれ 1.0 Å、0.2°とし、角度分解能を高めるために LiF アナライザ結晶を用いた。測定は、X 線照射による試料の酸化を防ぎ、また空気による散乱から生じるバックグラウンドを低減するため、カプトンドームで封じられた He 雰囲気下で行った。

4. 結果と考察

図2に作製したペンタセン薄膜のAFM高さ像を示す。成長温度を変化させることで、 200 nm~2 µm とドメインサイズの大きく異なる薄膜が得られた。成長温度が低い試料に おいて、ラメラ型結晶と呼ばれるペンタセン分子の長軸が基板面と平行に配向した結晶 粒が多く成長していることが分かる⁴⁾。しかし、ラメラ型結晶の多くはピラミッド型も しくは樹状型の結晶が基板を覆った後に成長しており、OTFTのキャリア輸送には影響 しないことが分かっているため、本研究においてはラメラ型結晶粒の影響は考慮しない こととする。

作製した試料の GIXD 測定結果を図 3 に示す。いずれの試料においても、30 nm 程度 の膜厚のペンタセン多結晶膜で頻繁に見られる"thin-film phase"に由来する回折ピーク が確認された。ただし(02L)と(12L)の回折ピークは明らかに非対称となっている。これ は"bulk phase"に由来する回折ピークが現れ始めているためであるが⁵⁰、thin-film phase に比べて強度が十分小さいこと、および OTFT のキャリア輸送にとって重要なペンタセ ン/SiO₂ 界面は thin-film phase であることから、解析では thin-film phase 由来の回折ピーク のみを用いた。なお、全ての回折ピークの半値幅はいずれも LiF アナライザ結晶を用い た場合の装置関数よりも十分広く、半値幅から結晶子サイズや不均一ひずみを評価する

図 2. SiO₂上に成長したペンタセン薄膜の AFM 高さ像. 成長温度 (a) 5℃, (b) 20℃, (c) 40℃, (d) 60℃, (e) 80℃, (f) 100℃.

ことが可能である。

回折ピークのフィッティングには Gauss 関数と Lorentz 関数のコンボリュ ーションである Voigt 関数を使用した。 その際、Gauss 関数成分の半値幅を装 置関数に固定し、Lorentz 関数成分の半 値幅をフィッティングパラメータとす ることで、ペンタセン由来の回折ピー ク半値幅を決定した。図 4(a)に解析結 果(Williamson-Hall プロット)を示す。 いずれの試料においても、プロットは ほぼ水平か、むしろ負の傾きを示して いる。これは、不均一ひずみの影響が ほとんどないことを意味している。こ の場合、回折ピークの半値幅は結晶子 サイズのみで決定され、結晶子サイズ の平均値は(1)式から不均一

ひずみの項を取り除いた

"Scherrer の式"で求められ る。図 4(b)に見積もられた結 晶子サイズとグレインサイズ の関係を示す。意外なことに、 成長温度を 5℃から 100℃ま で変化させることでグレイン サイズは 10 倍程度変化する のに対して、結晶子サイズは 30~50 nm 程度と成長温度に ほとんど依存しないことが分 かった。一般に、成長温度の 上昇に伴うグレインサイズの 増大は、成長核を形成する際 の、分子の核からの脱離レー トが上がることによって核密 度が減少するためであると説 明される。一方で結晶子サイ ズは、基板面内方向に結晶成 長する過程における積層欠陥

の生成頻度によって決まっていると考えられる。前述のとおり、結晶子サイズは成長温度に依存しないことから、積層欠陥は基板表面の微細な凹凸構造によって発生すると推測される。これを確認するため、本研究で用いた SiO₂表面の凹凸構造と結晶子サイズを

-120(64)-

比較した。図 5(a)は本研究で用いた SiO2 基板表面の AFM 高さ像のライ ンプロファイルを高速フーリエ変換 (FFT) したものである。FFT スペ クトルから、ペンタセンの結晶子サ イズとほぼ同じ周期の位置に明確な ピークが存在している事が分かる。 それ以外にも3つのピークが存在し ているが、低周波数側に見られる 2 つのピークについては、最高周波数 成分の2倍および4倍周期の成分で あると考えられる。また、高周波数 側の小さなピークについては、AFM の空間分解能である10nmよりも小 さくならない限りは試料形状を反映 したピークと判断されるが、ピーク 強度が結晶子サイズ付近の周波数に 見られるピーク に比べ非常に小さ いため、基板表面の凹凸構造を反映 した最大周波数は、結晶子サイズと ほぼ同じ 0.3 nm⁻¹ (周期約 33 nm)と 判断される。以上の考察から、結晶 子サイズは、基板表面の微細凹凸構 造によって成長初期の1層目か2層

図 5. (a) SiO₂表面形状プロファイルの FFT スペク トル (8 スペクトルの平均),および (b) 挿図の HOMO バンド端プロファイル (成長温度 60℃の試 料)の FFT スペクトル (4 スペクトルの平均).破 線は FFT スペクトルを Savitzky-Golay 法によってス ムージングした曲線を表す.

目に積層欠陥が生じることによって決まっている可能性が高いと考えられる。

次に HOMO バンド端ゆらぎと結晶子サイズの関係を調べた。図 5(b)に成長温度 60℃ で成長したペンタセン結晶ドメイン内における HOMO バンド端ゆらぎの空間プロファ イルの FFT 変換を示す。SiO₂表面プロファイルの FFT スペクトルと極めて類似したス ペクトルが得られている。前述の考察と同様、HOMO バンド端ゆらぎの最大空間周波数 は 0.3 nm⁻¹(周期約 33 nm)付近と、結晶子サイズとほぼ同じとなることが分かった。い くつかの試料における HOMO バンド端ゆらぎを評価した結果、HOMO バンド端ゆらぎ の特徴的な周期は結晶子サイズと同様に成長温度に依存しないことが分かっている。し たがって、結晶ドメインがさらに小さな結晶子からなるモザイク結晶となっていること が HOMO バンド端ゆらぎの起源であると考えられる。

4. まとめ

本稿では、放射光X線を用いた高角度分解能の微小角入射X線回折によるペンタセン 薄膜の不均一ひずみおよび結晶子サイズ評価について紹介した。解析結果から、SiO₂上 に成長したペンタセン薄膜においては不均一ひずみの影響はほとんどなく、回折ピーク 半値幅は結晶子サイズのみで決まることが分かった。また、結晶子サイズは薄膜の成長 温度には依存せず、基板表面 の凹凸構造によって決まって いることが分かった。さらに 結晶子サイズと HOMO バン ド端ゆらぎ周期の比較から、 結晶子サイズの境界において HOMO バンド端ゆらぎが生 じている可能性が高いことを 明らかにした。

最後にこれまで明らかになっているペンタセン多結晶膜の薄膜構造とキャリア輸送バンドの関係について図6にまとめる。ペンタセン多結晶膜は、(i) AFM で観測されるグレイン、(ii) グレインを4分割する結晶ドメイン、および(iii) 結晶ドメインよりも

図 6. ペンタセン多結晶膜における結晶構造とキャリア 輸送バンドの関係

さらに小さな結晶子による階層構造となっている。(i) と(ii) の境界はキャリア輸送 に対してはほとんど等価であり、境界には100 meV 以上のキャリア輸送障壁が形成され ていることから、ペンタセン多結晶膜におけるキャリア輸送のボトルネックとなってい る。しかしながら、(iii) の境界においても数十 meV 程度の HOMO バンド端プロファ イルのゆらぎが生じており、全体の移動度を低下させる要因となっている。特に近年、 OTFT のチャネルをシングルドメインで形成する技術が多く報告されており、このよう な場合、HOMO バンド端ゆらぎを低減することが最も移動度向上に効果がある。したが って、今後は(iii) の影響を考慮することがますます重要になってくると思われる。

謝辞

本研究は千葉大学 G-COE プログラム「有機エレクトロニクス高度化スクール」の助 成を受けて行われたものである。また、放射光を用いた実験は SPring-8 の重点産業利用 課題(2008A1813)として行われたものである。

参考文献

- N. Ohashi, H. Tomii, R. Matsubara, M. Sakai, K. Kudo, and M. Nakamura: Appl. Phys. Lett. 91 (2007) 162105.
- 2) R. Matsubara, N. Ohashi, M. Sakai, K. Kudo, and M. Nakamura: Appl. Phys. Lett. 92 (2008) 242108.
- 3) G. K. Williamson and W. H. Hall: Acta Metall. 1 (1953) 22.
- 4) H. Yanagisawa, T. Tamaki, M. Nakamura, and K. Kudo: Thin Solid Films, 464-465 (2004) 398.
- 5) I. P. M. Bouchoms, W. A. Schoonveld, J. Vrijmoeth, and T. M. Klapwijk: Synth. Met. 104 (1999) 175.