

Menu Changes to the class schedule Subject list Monthly Schedule Room reservation (PC only) Subject Registration System (Students only)

Subject list 2017 or before Graduate school of Information Science Graduate school of Bio Science Graduate school of Material Science Language : Photonics Special B (4067)

## Basic course information

| Course type                | Specialized Subjects  | Teacher training course           | Science    |
|----------------------------|-----------------------|-----------------------------------|------------|
| Number of Credits          | 1                     | Required • Elective etc.          | Elective   |
| Style                      | Lecture               | Main Language                     | English    |
| Scheduling                 | Ш                     | Subject Registration<br>System    | Use        |
| Taking registration period | 2018/10/02~2018/10/16 | Taking cancellation time<br>limit | 2018/11/16 |

## Registration Category

| Education Programs        | IS                                                                   | СВ | BS | BN | MS | CP | DS |
|---------------------------|----------------------------------------------------------------------|----|----|----|----|----|----|
| Registration Category     |                                                                      | Δ  | Δ  | 0  | 0  | 0  | 0  |
| Core Subjects             | -                                                                    | -  | -  | -  | -  | -  | -  |
| Registration requirements | Take 12 or more credits from Basic Subjects and Specialized Subjects |    |    |    |    |    |    |

## Overview

| Supervising lecturer     | Jun Ohta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Lecturer                 | Jun Ohta, Takayuki Yanagida, Takashi Tokuda, Noriaki Kawaguchi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Learning Objectives      | In the formar four classes, principle, structure, function and applications of photosensors and image sensors are presented. The purpose of this<br>part is to understand both basics and technical issues of the semiconductor photonic devices. In latter four classes, some fundamental physics<br>and applications of indirect-type radiation detectors are explained. The purpose of these classes are to understand fundamental physics of<br>luminescent phenomena, device technology of scintillators and dosimeter materials, and some applications including medical imaging, security<br>system, oil-logging, high energy physics and environmental monitoring. |
| Instructional Activities | For photonic / image sensors, from the concept of accumulation of photocarriers to advanced technologies for image sensors, device technology<br>is described from both the aspects of semiconductor phisics and engineering. Since radiation detectors typically consist of phosphors and<br>photodetectors, latter four courses require to understand semiconductor optical devices explained in former four classes. After the explanation<br>about some fundamental physics of luminescent phenomena, scintillators and dosimeters, and their applications will be explained.                                                                                          |

## Course plan

| Number | Date [Time] | Theme                                                                          | Content                                                                                                                                                                                                                                                                 |
|--------|-------------|--------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1      | 11/14 [1]   | Basics of semiconductorengineering and opticalengineering                      | The basics of semiconductor engineering (e.g., bandstructures, optical transition, carrier<br>density distribution, impurity doping, p-n junctions, carrier transport) for imagesensor are<br>explained                                                                 |
| 2      | 11/16 [2]   | Element devices of imagesensors and semiconductor integrated circuit processes | The lectures explain P-N junction diodes, photodiodes, MOScapacitors, and MOSFETs, as<br>well as basic semiconductorintegrated circuit processes.                                                                                                                       |
| 3      | 11/21 [1]   | Pixel structures andbasic characteristics                                      | The lectures explain (i) the concept of charge storage and 3T-APS/4T-APS, (ii) dark<br>current, noise, and opticalcharacteristics (basic characteristics of image sensors), and(iii)<br>comparison with visual systems in organisms.                                    |
| 4      | 11/22 [5]   | Features of and outlookfor CMOS image sensors                                  | The lecture explains the features of CMOS image sensors and a comparison with CCD<br>sensors, and presents the latestresearch including pixel scaling and color processing                                                                                              |
| 5      | 11/28 [1]   | Physics of Luminescent materials                                               | The lectures explain fundamental physics of absorption and emission. After the explanation<br>of fundamental physics, measurement methodologies of absorption and luminescence<br>phenomena are overviewed.                                                             |
| 6      | 11/29 [3]   | Scintillator                                                                   | The lectures explain about fundamental physics of scintillation, and scintillation detectors.                                                                                                                                                                           |
| 7      | 11/30 [2]   | Storage phosphors for dosimeter                                                | The lectures explain mechanisms and fundamental physics of storage phosphors for<br>dosimeters, actual device structure of dosimeters.                                                                                                                                  |
| 8      | 12/5 [4]    | Radiation detectors                                                            | Scintillators and dosimeters are used in various fields, such as medical imaging, security<br>inspection, well-logging, astro/particle physics, environmental monitoring and so on. The<br>lectures explain about detectors and instrumentations for such applications. |

| Number | Date  | Time | Room | Note |
|--------|-------|------|------|------|
| 1      | 11/14 | 1    | F106 |      |
| 2      | 11/16 | 2    | F106 |      |
| 3      | 11/21 | 1    | F106 |      |
| 4      | 11/22 | 5    | F106 |      |
| 5      | 11/28 | 1    | F106 |      |
| 6      | 11/29 | 3    | F106 |      |
| 7      | 11/30 | 2    | F106 |      |
| 8      | 12/5  | 4    | F106 |      |

# Textbook/Reference book

| Textbook       | None. Handout and slides will be provided as necessary.                                                                                                                                                                                                                                                         |
|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Reference book | <ul> <li>"Basics and Applications of CCD/CMOS Image Sensors", Kazuya Yonemoto (CQ Publishing Co.,Ltd.) (in Japanese)</li> <li>Jun Ohta "Smart CMOS Image Sensors and Applications" CRC Press</li> <li>Junichi Nakamura Ed., "Image Sensors and Signal Processing for Digital Still Cameras" CRCPress</li> </ul> |

## Other information

| Prerequisites    | None                                                                                                                                                                                                                                                                                                       |  |
|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Office hour      | Contact by email to decide dates                                                                                                                                                                                                                                                                           |  |
| Grading          | Evaluated as S, A, B, C, or D     Evaluated by examination, practice or report     Evaluated by examination, practice or report     Evaluated by how the student understands the basic concepts and knowledges about semicondutor photosensor technology and indirect-type radiation detection technology. |  |
| Related subjects | None                                                                                                                                                                                                                                                                                                       |  |
| Related Degree   | Science                                                                                                                                                                                                                                                                                                    |  |
| Notice           | None                                                                                                                                                                                                                                                                                                       |  |

# Lecture related URL

## There is no data by which indication is possible.

# Handouts

## There is no data by which indication is possible.

COPYRIGHT(C) 2018 NARA INSTITUTE of SCIENCE and TECHNOLOGY ALL RIGHTS RESERVED.